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Abstract. In this paper, the removability of the Hopf term in the 2+1D CP1 model is studied. A
quantum unitary transformation is found and used to remove the Hopf term from the Hamiltonian
for the model. It is then shown that there is an intimate connection between the Hopf term and
the multivaluedness of the wavefunctional describing the model.

1. Introduction

The 2+ 1D CP1 model (or, equivalently, the 2+ 1D O(3) nonlinearσ -model) has long
attracted considerable attention since it is the first of the field realizations of the speculation
of the fractional statistics [1, 2] and may play an important role in the investigation of a
number of problems in condensed matter physics [3–6].

It is important to answer the question of whether or not the Hopf term exists in the 2+1D
CP1 model when it is regarded as the continuum limit of the Heisenberg antiferromagnetic
spin model. Fradkinet al [7–9] concluded that, as the continuum limit of the spin model,
the 2+ 1D CP1 model does not have the Hopf term. Essentially, they drew this conclusion
only from the consideration of the relation between the Lagrangians for the spin and the
CP1 models.

In [10], Giavarini et al demonstrated the removability of the Berry phase [11] that
is, the Berry phase for any one-dimensional system can be removed by a chosen unitary
transformation. Later, the idea in [10] was successfully employed to study the removability
of the topological term, which is essentially a type of geometrical phase, in the 1+1D CP1

model [12]. In the present paper, we use the idea in [10] to investigate the removability
of the Hopf term in the 2+ 1D CP1 model. A quantum unitary transformation is found
and used to remove the Hopf term from the Hamiltonian for the model. It is then shown
that there is an intimate connection between the Hopf term and the multivaluedness of
the wavefunctional describing the model. The amplitude for the transition from vacuum
to vacuum is calculated. From this calculation, it can be seen that the Hopf term gives
rise to the geometric phase which is similar to the Berry phase. Finally, we argue that
the Hopf term may be the manifestation of the ‘molecular’ Aharonov–Bohm effect in an
infinite-dimensional system with two interacting parts.

The quantization of the 2+1D CP1 model is complicated since it is a constrained system
with an internal gauge degree of freedom. Recently, Pak and Percacei [13] simplified the
quantization by using Euler angles as parameters which remove one constraint automatically
[13]. We are to use this parametrization to discuss the removability of the Hopf term.
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2. The classical canonical transformation and the corresponding quantum unitary
transformation which removes the Hopf term from the Hamiltonian

The action for the O(3) nonlinearσ -model with the Hopf term is [1, 2]

S = 1

2g2

∫
d3x ∂µn

a∂µna + 2

4π

∫
d3x εµνλaµ∂νaλ

nana = 1, a = 1, 2, 3, µ = 0, 1, 2
(1)

where the gauge potentialaµ is defined through the topologically conserved current
Jµ = (1/8π)εµνλεabcna∂νnb∂λnc = εµνλ∂νaλ and ∂1 = ∂/∂x1, ∂2 = ∂/∂x2, ∂3 = ∂/∂t .
The second term in (1) is the Hopf term with coefficient2. It is difficult to deal with
the action in (1) because of the non-locality of the Hopf term inna. The O(3) nonlinear
σ -model can be equivalently formulated as the CP1 model [5] by introducing the variable
Z via na = Z+σaZ, whereZ is a spinor with two complex components, satisfying the
constraintZ+Z = 1, σa is the Pauli matrix. Pak and Percacei [13] parametrizeZ with
Euler angles [13] as follows

Z =
(

cos(θ/2) exp(+iϕ/2)
sin(θ/2) exp(−iϕ/2)

)
exp(iψ/2) (2)

leading to the expression forL2

L2 = (1/2g2)(∂µθ∂
µθ + sin2 θ∂µϕ∂

µϕ)+ (2/16π2)ελµν sinθ∂λθ∂µϕ∂νψ (3)

which describes the CP1 model—a constrained system withψ being an internal gauge
degree. Note that, in the CP1 model with Pak’s parametrization, not only is the Hopf term
local in the Euler angles, but the constraintZZ+ = 1 is removed automatically. This
considerably simplifies the quantization procedure for the model.

By means of a canonical procedure, it is easy to obtain the corresponding Hamiltonian
[13]:

H2 =
∫

d3 x[h2 + λ(x)C(x)]

h2 = (g2/2)[(πθ − (2/16π2) sinθεij ∂iϕ∂jψ)
2 + (1/ sin2 θ)(πϕ − (2/16π2)

× sinθεij ∂iψ∂j θ)] + (1/2g2)(∂iθ∂iθ + sin2 θ∂iϕ∂iϕ) (4)

where the sum of the2-dependent terms is the Hopf term in the Hamiltonian,λ(x) a
Lagrange multiplier field,C(x) = πψ − (2/16π2) sinθεij ∂iθ∂jϕ a primary constraint.
There is no secondary constraint sinceC(x) commutes withH . With lengthy calculation,
it can be shown that the canonical transformation

θ → θ ′ = θ ϕ → ϕ′ = ϕ ψ → ψ ′ = ψ

πθ → πθ ′ = πθ − (2/16π2) sinθεij ∂iϕ∂jψ

πϕ → πϕ′ = πϕ − (2/16π2) sinθεij ∂iψ∂j θ

πψ → πψ ′ = πψ − (2/16π2) sinθεij ∂iθ∂jϕ (5)

transformsh2 andL2 into h2=0 andL2=0:

h2 → h2=0 = g2/2(πθ ′ + πϕ′/ sin2 θ ′)+ (1/2g2)(∂iθ
′∂iθ ′ + sin2 θ ′∂iϕ′∂iϕ′)

L2 → L2=0 = θ ′πθ ′ + ϕ′πϕ′ + ψ ′πψ ′ − h′
0 = (1/2g2)(∂µθ

′∂µθ ′ + sin2 θ ′∂µϕ′∂µϕ′). (6)

h2=0 andL2=0 no longer contain the Hopf term which has been removed by the canonical
transformation in (5). Suppose thatL2=0 (in which the Hopf term is absent) is that obtained
from the Lagrangian for the spin model by taking the continuum limit, the inverse of the
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canonical transformation (5) can be used to transformL2=0 into L2 in which there is the
Hopf term. This means that the Hopf term is only a surface term. Thus, in order to study
the physical meaning of the Hopf term in the CP1 model, it appears to be necessary to
quantize the model and construct the unitary transformation corresponding to the classical
canonical transformation (5).

The quantum Hamiltonian is [13]

H2 =
∫

d2x [h2 + λ(x)C(x)]

h2 = g2/2{(1/ sinθ)[πθ − (2/16π2) sinθεij ∂iϕ∂jψ ]

× sinθ [πθ − (2/16π2) sinθεij ∂iϕ∂jψ ]

+ sin2 θ(πϕ − (2/16π2) sinθεij ∂iψ∂j θ)
2}

+(1/2g2)(∂iθ∂iθ + sin2 θ∂iϕ∂iϕ) (7)

whereC(x) = πψ − (2/16π2) sinθεij ∂iθ∂jϕ is the constraint operator. As usual, the
commutation relations are

[θ(x), πθ (x
′)] = iδ2(x − x ′)

[ϕ(x), πϕ(x
′)] = iδ2(x − x ′)

[ψ(x), πψ(x
′)] = iδ2(x − x ′) (8)

and the physical state|9〉phy satisfiesC(x)|9〉phy = 0. With considerable effort, we find
the global expression for the quantum unitary transformation

U = exp

[
i(2/16π2)

∫
c

dx1 dx2 dτ εµνλ sinθ∂µθ∂νϕ∂λψ

]
(9)

whereC represents the path (which is parametrized byτ ) and ∂1 = ∂/∂x1, ∂2 = ∂/∂x2,
∂3 = ∂/∂τ . The pathC starts from a reference configuration{θ0(x), ϕ0(x), ψ0(x)} at τ = τi
and ends at the configuration{θ(x), ϕ(x), ψ(x)} at τ = τf where the local calculation for
UH2U

+ is to be carried out. With the help of the fact thatεµνλ sinθ∂µθ∂νϕ∂λψ = ∂µω
µ

with ωµ = εµνλψ sinθ∂νθ∂λϕ is a total derivative, we obtain for the integral in (9)∫
c

dx1 dx2 dτ ∂µω
µ =

∫
dx1 dx2 [ω(θ, ϕ, ψ)− ω(θ0, ϕ0, ψ0)] (10)

by noting that, as usual, there is no contribution from the spatial infinity. It is then easy to
carry out the local calculation forUH2U+ to get

UH2U
+ = H2=0. (11)

This means that the Hopf term can be removed byU which corresponds to the classical
canonical transformation in (5). Note that, in order to globally define the unitary
transformation, one must employ (9). This globally definedU is apparently multivalued.

Now, we turn to the discussion of the physical meaning of the Hopf term. According
to the basic principle of the quantum field theory, theU transforms the HamiltonianH2
and the physical state vector|9〉phy, which is single-valued, in the following way

H2 → UH2U
+ = H2=0 (12)

|9〉phy → U |9〉phy = |9,2〉phy. (13)

Apparently|9,2〉phy is multivalued sinceU is multivalued. This means that the CP1 model
described by the single-valued wavefunctional with the HamiltonianH2 (in which the Hopf
term is present) is physically equivalent to the CP1 model described by the multivalued
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wavefunctional with the HamiltonianH2=0 (in which the Hopf term is absent). This
indicates that the Hopf term actually represents a type of Aharonov–Bohm effect in the
CP1 model—an infinite-dimensional system.

In quantum field theory, it is important to calculate the amplitude for the transition
from vacuum to vacuum. Because of the stability of the vacuum state, the cyclic condition
is satisfied and the amplitude is actually the phase factor in which there is a geometric
phase similar to the Berry phase. With the help of the complete set of the shape states
|θ(x), ϕ(x), ψ(x)〉, we calculate the amplitude〈0| exp(−H2T )|0〉 and obtain

〈0| exp(−H2T )|0〉 = CN

∫ ( N−1∏
m=0

∏
x1x2

dpm dkm dqm

)( N−1∏
n=1

∏
x1x2

sinθn dθn dϕn dψn

)
× exp

{
ε

N−1∑
k=0

∫
d2x (pkθk + kk sinθkϕk + qkψk)

−g
2

2

[ (
pk − 2

16π2
sinθkε

ij ∂iϕk∂jψk

)2

+ 1

sin2 θk

(
kk − 2

16π2
sinθkε

ij ∂iψk∂j θk

)2 ]
+ 1

2g2
[(∂iθk)

2 + sin2 θk(∂iϕk)
2] + iλk

(
qk − 2

16π2
sinθkε

ij ∂iθk∂jϕk

) }
= CN

∫ ( ∏
x0x1x2

sinθ dθ dϕ dψ

)
× exp

{
− ε

∫
d3x

[
1

2g2
(∂µθ∂

µθ + sin2 θ∂µϕ∂
µϕ)

+i
2

16π2
ελµν sinθ∂λθ∂µϕ∂νψ

]}
(14)

where T = Nε(N → ∞), ε is infinitesimally small. Note that the constraint has
been considered via the integration over the Lagrange multiplier fieldλ. The term
i 2

16π2 ε
λµν sinθ∂λθ∂µϕ∂νψ in (14) is the Hopf term and gives rise to the geometric phase

factor.

3. Discussion

A molecule is a system which contains two interacting parts—a nuclear and an electron part.
When the Born–Oppenheimer method is used to study a molecule, the effective Hamiltonian
for the nuclear part will contain a Berry connection term [14], as both the wavefunctions for
the nuclear and electron parts are required to be single-valued. If the wavefunction for the
electron part as well as that for the nuclear part are allowed to be multivalued (the product
of them remains single-valued), the Berry connection term can be removed. This is referred
to as the molecular Aharonov–Bohm effect [15]. The Hopf term may represent a type of
‘molecular’ Aharonov–Bohm effect in an infinite-dimensional system which contains two
interacting parts of which one is the CP1 (or spin) system. If this is the case, one has to
find another part which interacts with the CP1 (or spin) system. Work in this direction is
under investigation.
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