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Abstract. In this paper, the removability of the Hopf term in the 2+1D'@Rodel is studied. A
quantum unitary transformation is found and used to remove the Hopf term from the Hamiltonian
for the model. It is then shown that there is an intimate connection between the Hopf term and
the multivaluedness of the wavefunctional describing the model.

1. Introduction

The 24 1D CP* model (or, equivalently, the 2 1D O(3) nonlinears-model) has long
attracted considerable attention since it is the first of the field realizations of the speculation
of the fractional statistics [1,2] and may play an important role in the investigation of a
number of problems in condensed matter physics [3—6].

Itis important to answer the question of whether or not the Hopf term exists inth®?2
CP' model when it is regarded as the continuum limit of the Heisenberg antiferromagnetic
spin model. Fradkiret al [7-9] concluded that, as the continuum limit of the spin model,
the 24 1D CP* model does not have the Hopf term. Essentially, they drew this conclusion
only from the consideration of the relation between the Lagrangians for the spin and the
CP' models.

In [10], Giavarini et al demonstrated the removability of the Berry phase [11] that
is, the Berry phase for any one-dimensional system can be removed by a chosen unitary
transformation. Later, the idea in [10] was successfully employed to study the removability
of the topological term, which is essentially a type of geometrical phase, in the 1+1D CP
model [12]. In the present paper, we use the idea in [10] to investigate the removability
of the Hopf term in the 2- 1D CP* model. A quantum unitary transformation is found
and used to remove the Hopf term from the Hamiltonian for the model. It is then shown
that there is an intimate connection between the Hopf term and the multivaluedness of
the wavefunctional describing the model. The amplitude for the transition from vacuum
to vacuum is calculated. From this calculation, it can be seen that the Hopf term gives
rise to the geometric phase which is similar to the Berry phase. Finally, we argue that
the Hopf term may be the manifestation of the ‘molecular’ Aharonov—-Bohm effect in an
infinite-dimensional system with two interacting parts.

The quantization of the-21D CP* model is complicated since it is a constrained system
with an internal gauge degree of freedom. Recently, Pak and Percacei [13] simplified the
guantization by using Euler angles as parameters which remove one constraint automatically
[13]. We are to use this parametrization to discuss the removability of the Hopf term.
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2. The classical canonical transformation and the corresponding quantum unitary
transformation which removes the Hopf term from the Hamiltonian

The action for the O(3) nonlinear-model with the Hopf term is [1, 2]

C)
S Bx 8,19 n" + - / dBx e a,d,a;

= 52
n‘n“=1a=123 u=012
where the gauge potential, is defined through the topologically conserved current
Ju = (1/8m)e"ebnad,nbdn¢ = e"*d,a; and d; = 9/dxt, 3, = 3/9x2, 93 = 9/0t.
The second term in (1) is the Hopf term with coefficignt It is difficult to deal with
the action in (1) because of the non-locality of the Hopf termein The O(3) nonlinear
o-model can be equivalently formulated as the*@model [5] by introducing the variable
Z vian® = Zto%Z, where Z is a spinor with two complex components, satisfying the
constraintZ*Z = 1, ¢ is the Pauli matrix. Pak and Percacei [13] parametfzgvith
Euler angles [13] as follows

[ cog6/2) exp(+ip/2)
— \ sin(6/2) exp(—ig/2)
leading to the expression fdrg

Lo = (1/2¢%)(8,00"0 + sir? 08,0d" ¢) + (© /16m2)e**” sin09,08,,¢d, (3)

which describes the CPmodel—a constrained system wiih being an internal gauge
degree. Note that, in the EPnodel with Pak’s parametrization, not only is the Hopf term
local in the Euler angles, but the constrainZ™ = 1 is removed automatically. This
considerably simplifies the quantization procedure for the model.

By means of a canonical procedure, it is easy to obtain the corresponding Hamiltonian
[13]:

He = / & x[ho + 1()C)]

he = (8°/2)[ (s — (©/167°) sinfe" 0,93 ) + (1/ i’ 0) (,, — (O /1677)

x SiNAe" ;4r9;0)] + (1/2g°)(8;08;6 + Sirf 09,09, ¢) (4)
where the sum of th@-dependent terms is the Hopf term in the Hamiltoniagy) a
Lagrange multiplier field,C(x) = my, — (©/1672)sinfe"/3;03;¢ a primary constraint.
There is no secondary constraint sin€ér) commutes withH. With lengthy calculation,
it can be shown that the canonical transformation

0>60=0 9—>¢=¢ Yoy =y

Ty — e = 1y — (O /16m?) Sinfe” 9,09,

T, — Ty = 1w, — (O /1672) sinfe” 9;19;60

Ty — my =1y — (©/1672) sinfe" 8;09;¢ (5)
transformshg and Lg into hg—g and Le—o:
he — ho—o = g°/2(my + my/ SIN*0') + (1/2g%)(3;6'9;6' + SIN 0'9;9'0; ")
Lo — Lo—o =01ty + @'y + V'my — hy = (1/28%)(3,0'9,0' + sir?0'8,¢'9,¢").  (6)
he—o and Lg—g no longer contain the Hopf term which has been removed by the canonical

transformation in (5). Suppose theg_o (in which the Hopf term is absent) is that obtained
from the Lagrangian for the spin model by taking the continuum limit, the inverse of the

(1)

) expiiv/2) @)
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canonical transformation (5) can be used to transféwgmng into Le in which there is the
Hopf term. This means that the Hopf term is only a surface term. Thus, in order to study
the physical meaning of the Hopf term in the ‘CRodel, it appears to be necessary to
guantize the model and construct the unitary transformation corresponding to the classical
canonical transformation (5).

The quantum Hamiltonian is [13]

He = /dzx [he + A (x)C(x)]

he = g2/2{(1/ sind)[ry — (O /16m2) sinfe” §;9d;v]

x sind[my — (© /1672) sinBe” 9,09, ¥/]

+sif0(rr, — (©/1672) sinde” 3, 9;0)?)

+(1/2g%)(9;00;0 + sir® 63;¢0d;¢) 7
where C(x) = my — (®/1672) sinfe/3;09;¢ is the constraint operator. As usual, the
commutation relations are

[0(x), o (x)] = i6%(x — x)

[p(x), my(X] = 18%(x — x')

[V (x), 7y (x)] = i8°(x — x) ®)

and the physical statgl),n, satisfiesC (x)|¥)pny = 0. With considerable effort, we find
the global expression for the quantum unitary transformation

U= exp[i(@/l&rz) fdx1 dx? dr e#"* sineaﬂeavwam} (9)
C

where C represents the path (which is parametrizedrpyand 8; = 9/9x!, 9, = 9/9x?,
d3 = d/dt. The pathC starts from a reference configuratiiy(x), o(x), Yo(x)} att = 7;
and ends at the configuratidti(x), ¢(x), ¥ (x)} at t = 7 where the local calculation for
UHpUT is to be carried out. With the help of the fact thét* sin69,00,¢0, ¥ = 3,0"
with w* = e*"*4 sinfd,0 9, ¢ is a total derivative, we obtain for the integral in (9)

/dxldxzdr dot = /dxldxz[w(e, @, ¥) — @ (6o, po, V0)] (10)

by noting that, as usual, there is no contribution from the spatial infinity. It is then easy to
carry out the local calculation fay HoU* to get

UHoU" = Ho—o. (11)

This means that the Hopf term can be removedlbyvhich corresponds to the classical

canonical transformation in (5). Note that, in order to globally define the unitary

transformation, one must employ (9). This globally defiiéds apparently multivalued.
Now, we turn to the discussion of the physical meaning of the Hopf term. According

to the basic principle of the quantum field theory, ttietransforms the Hamiltoniatlg

and the physical state vectp¥),n,, which is single-valued, in the following way

H@ — UI‘I@U7L = H@:() (12)
[W)phy = UlW)phy = |V, O)phy. (13)
Apparently| W, ®)pny is multivalued sincé/ is multivalued. This means that the ERodel

described by the single-valued wavefunctional with the Hamiltoifgn(in which the Hopf
term is present) is physically equivalent to the'QRodel described by the multivalued
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wavefunctional with the HamiltoniarHg—o (in which the Hopf term is absent). This
indicates that the Hopf term actually represents a type of Aharonov—Bohm effect in the
CP! model—an infinite-dimensional system.

In quantum field theory, it is important to calculate the amplitude for the transition
from vacuum to vacuum. Because of the stability of the vacuum state, the cyclic condition
is satisfied and the amplitude is actually the phase factor in which there is a geometric
phase similar to the Berry phase. With the help of the complete set of the shape states
10(x), (x), ¥(x)), we calculate the amplitud®| exp(—He T)|0) and obtain

N-1 N-1
(0l exp(—HoT)[0) = Cy / ( [T11dpndk, dqm) ( [T siné. o, de, oh/fn)

m=0 x1x2 n=1 x1x2

N-1
X exp{e > / &’x (pibi + ki SiNGk i + qi)
k=0

2 2
g ® | i
Y |:<Pk ~ 162 Sm@ksjai‘/)kajl//k)
+ ! (k © sing ffawae)z}
Sirf g, kT 16n2 k k9 Ok

+i[(a-9k)2+sinzek(a-gok)2]+ixk qx — © SinBre’ 8;0,.9; ok
2g2 l l 1677,'2 13 J

:cN/< I1 sin0d9d<pd1/f>

X0X1X2

1 .
X exp{ —¢ / d®x [22(8,193“9 + Sir? 09,99" )
g
©)

+ime“” sineakea,ﬁpavw} } (14)

where T = Ne(N — o0), ¢ is infinitesimally small. Note that the constraint has
been considered via the integration over the Lagrange multiplier field The term
ilgze“‘” sin0d,09,¢9,y in (14) is the Hopf term and gives rise to the geometric phase
factor.

3. Discussion

A molecule is a system which contains two interacting parts—a nuclear and an electron part.
When the Born—Oppenheimer method is used to study a molecule, the effective Hamiltonian
for the nuclear part will contain a Berry connection term [14], as both the wavefunctions for
the nuclear and electron parts are required to be single-valued. If the wavefunction for the
electron part as well as that for the nuclear part are allowed to be multivalued (the product
of them remains single-valued), the Berry connection term can be removed. This is referred
to as the molecular Aharonov—Bohm effect [15]. The Hopf term may represent a type of
‘molecular Aharonov—Bohm effect in an infinite-dimensional system which contains two
interacting parts of which one is the ERor spin) system. If this is the case, one has to
find another part which interacts with the £fr spin) system. Work in this direction is
under investigation.
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